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Deformation Dynamics and the Gauss–Bonnet
Topological Term in String Theory

A. Escalante1

Received

We show that there exists a nontrivial contribution on the Witten covariant phase space
when the Gauss–Bonnet topological term is added to the Dirac–Nambu–Goto action
describing strings, because the geometry of deformations is modified, and on such space
we construct a symplectic structure. Future extensions of the present results are outlined.
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1. INTRODUCTION

As we know, if we add the Gauss–Bonnet [GB] topological term in any action
describing strings (for example the Dirac–Nambu–Goto action [DNG]), we do not
find any contribution to the equations of motion, because the field equations of the
[GB] topological term are proportional to the called Einstein tensor, and it does not
give any contribution to the dynamics in a two-dimension worldsheet swept out
by a string, since the Einstein tensor vanishes for such a geometry. In this manner,
if we use the conventional canonical formalism based in the classical dynamics of
the system, we would not find apparently nothing interesting.

However, using a covariant description of the canonical formalism (Crncović
and Witten, 1987), and identifying the arguments of the total divergences at the level
of the lagrangian as symplectic potentials (Escalante, 2004), in Cartas-Fuentevilla
(2004) gives a sign that the [GB] topological term has a nontrivial contribution
in the symplectic structure constructed on the classical covariant phase space.
But, in Cartas-Fuentevilla (2004) important calculations are not developed, for
example: the contribution of the [GB] topological term to the linearized equations
of motion that are useful for stability analysis, subsequently the construction of a
covariantly conserved symplectic current that allows us to establish a conection
between functions and Hamiltonian vector fields, and the correct identification of
the exterior derivative on the phase space.
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México; e-mail: aescalan@sirio.ifuap.buap.mx.

1491

0020-7748/04/0600-1491/0 C© 2004 Springer Science+Business Media, Inc.



1492 Escalante

In this manner, the purpose of this article is to show in a clear way how
the [GB] topological term modifies the symplectic geometry of the Witten co-
variant phase space, when we add it to the [DNG] action for string theory, by
developing new ideas and completing the results presented in Cartas-Fuentevilla
(2004).

This paper is organized as follows. In the Sect. 2, using the deformations
formalism introduced in Capovilla and Guven (1995), we calculate the normal
and tangential deformations of quantities on the embedding, that will be useful in
our developments. In Sect. 3, we obtain the equations of motion and identify the
corresponding symplectic potential for [DNG-GB] p-branes, also we calculate the
linearized equations of motion and show that in general the [GB] topological term
gives indeed a nontrivial contribution on the deformations geometry. In Sect. 3.1,
we take the results obtained in Sect. 3 for the case of string theory, and we show
that in spite of the dynamics for [DNG] and [DNG-GB] in string theory being the
same, the simplectic potential, and the linearized dynamics are modified because
of the [GB] topological term, and therefore, there is a relevant contribution on
the phase space. In Sect. 4, from the linearized equations obtained in Sect. 3.1 for
string theory, we obtain a symplectic current by applying the self-adjoint operators
scheme, proving that there is a world sheet covariantly conserved current. In Sect. 5,
we define the Witten covariant phase space for [DNG-GB] strings, and using the
symplectic current found in Sect. 4, we construct a geometrical structure, showing
that it has a relevant contribution because of the [GB] topological term. In Sect. 6,
we give conclusions and prospects.

2. DEFORMATIONS OF THE EMBEDDING

In the scheme of deformations (Capovilla and Guven, 1995), the physically
observable measure of the deformations of the embedding is given by the orthog-
onal projection of the infinitesimal spacetime variations δXµ = ni

µφi , and the
tangential deformations together with the total divergence terms are neglected.
However, in Escalante (2004) it is shown that tangential deformations and di-
vergence terms are important because such terms are identified as symplectic
potentials, whose variations (the exterior derivative on the space phase) generate
the integral kernel of a covariant and gauge invariant symplectic structure, for the
theory under study. Thus, for a complete analysis, we do not only need to calculate
the normal deformations of fields defined on the embedding as in Capovilla and
Guven (1995), but also the tangential deformations, that will be important in the
development of this work.

For this purpose, we decompose an arbitrary infinitesimal deformation of the
embedding δXµ into its parts tangential and normal to the worldsheet

δXµ = ea
µφa + ni

µφi , (1)
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where ni
µ are vector fields normal to the worldsheet and ea

µ are vector fields
tangent to such a worldsheet, thus, the deformation operator is defined as

D = Dδ + D�, (2)

where

Dδ = δµ Dµ, δµ = ni
µφi , (3)

and

D� = �µ Dµ, �µ = ea
µφa , (4)

therefore, we can find that the deformations of the intrinsic geometry of the em-
bedding are given by

Dea = (
K ab

iφi
)
eb + (∇̃aφi )n

i + (∇aφ
b)eb − K ab

iφbni , (5)

Dγab = 2K ab
jφ j + ∇aφb + ∇bφa , (6)

Dγ ab = −2K ab jφ j − ∇aφb − ∇bφa , (7)

D
√−γ = √−γ [∇aφ

a + K iφi ], (8)

Dγ g f
a = γ ad

[∇ f
(
K gd

jφ j
) + ∇g

(
K f d

jφ j
) − ∇d

((
K g f

jφ j
)]

+ 1

2
γ ad

[
2∇(g∇ f )φd − Re

f dgφe − Re
gd f φe

]
, (9)

DRab = ∇c
(
Dγ ab

c
) − ∇b

(
Dγ ac

c
)
, (10)

DR = (Dγ ab)Rab + γ ab(DRab) = −2∇aφb Rab − 2K ab jφ j Rab

+ γ ab
[∇c

(
Dγ ab

c
) − ∇b

(
Dγ ac

c
)]

, (11)

where, K ab
i , γab, γ g f

a , R, Rab are the extrinsic curvature, the metric, the con-
nection coefficients, the scalar curvature, and the Ricci tensor of the worldsheet,
respectively (Capovilla and Guven, 1995).

For this article this is sufficient on the deformations of embedding.

3. THE DNG ACTION FOR p-BRANES WITH A
GAUSS–BONNET TERM

As we know, the [DNG] action for p-branes is proportional to the area of the
spacetime trajectory created by the brane, and the Gauss–Bonnet term is propor-
tional to the Ricci scalar R constructed from the world surface metric γab. Both
terms are given in the following action

S = −σ

∫ √−γ d Dξ + β

∫ √−γ Rd Dξ , (12)

where σ and β are constants, and D is the dimension of the worldsheet.
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In agreement with Eqs. (8)–(11), the variation of the action (12) is given by

DS = −
∫ √−γ

[
σ K i + 2βGab K abi

]
φi d

Dξ

+
∫ √−γ∇a

[ − σφa − 2βGabφb + βγ cdDγ a
cd − βγ abDγ cb

c
]
d Dξ ,

(13)

where we can identify the equations of motion

σ K i + 2βGab K abi = 0, (14)

. being Gab the world surface Einstein tensor given by

Gab = Rab − 1

2
γab R, (15)

and the argument of the pure divergence term is identified as a symplectic potential
for the theory (Escalante, 2004), as it will be proved below.


a = √−γ
[−σφa − 2βGabφb + βγ cdDγ a

cd − βγ abDγ cb
c
]
. (16)

We notice from Eq. (16), that the symplectic potential found in Cartas-Fuentevilla
(2004) is incomplete; the reason is that the normal variation (Dδ) is considered
as exterior derivative on the phase space, however, as we will show in the next
sections the correct exterior derivative on the phase space is the sum of normal and
tangential variations (Dδ + D�).

On the other hand, such as in Escalante (2004), the variation of 
a (the deriva-
tive exterior on the phase space) will generate the integral kernel of a covariant
and gauge invariant symplectic structure for [DNG-GB] theory. In this manner,
we can see in Eq. (16) that in general there is a relevant contribution on the phase
space because of the terms proportional to the parameter β, coming from the [GB]
term.

In order to give a more detailed analysis, let us see how the [GB] term con-
tribute to the linearized equations of motion when we add it to the [DNG] action
for p-branes, for this we calculate the variations of the Eq. (14), obtaining

σ [−�̃i
j − K ab

i K ab
j + g(R(ea , n j )e

a , ni )]φ j

+ 2βGab[−∇̃a∇̃bφ
i + K ad

i K d
b

jφ j + g(R(ea , n j )eb, ni )φ j ]

− 8βK b
d

i K ad jφ j Gab + 4βK abi ∇̃c∇̃b K a
cjφ j + 4βK abi ∇̃b K a

cj ∇̃cφ j

+ 4βK abi ∇̃c K a
cj ∇̃bφ j + 4βK abi K a

cj ∇̃c∇̃bφ j − 2βK abi�̃K ab
jφ j

− 4βK abi ∇̃c K ab j ∇̃cφ j − 2βK abi K ab
j�̃φ j − 2βK abi ∇̃b∇̃a K jφ j

− 4βK abi ∇̃a K j ∇̃bφ j − 2βK abi K j ∇̃b∇̃aφ j − 2βK abi K ab
jφ j R
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+ 2β Rcd K cd
jφ

j K i + 2βK i�̃K jφ j + 4βK i ∇̃c K j ∇̃cφ j

+ 2βK i K j�̃φ j − 2βK i ∇̃c∇̃g K gcjφ j − 4βK i ∇̃g K gcj ∇̃cφ j

− 2βK i K cgj ∇̃c∇̃gφ j = 0, (17)

where g(R(Y1, Y2, )Y3, Y4) ≡ Rαβγ νY 2
αY 1

βY 3
γ Y 4

ν , Rαβγ ν being the background
Riemman tensor (Capovilla and Guven, 1995). We can identify the first term of
the last equation as the linearized dynamics of [DNG] theory, and the proportional
terms to the parameter β as the contribution of [GB] term. As one would expect,
if the parameter β vanished, we should obtain the linearized equations for [DNG]
theory (Capovilla and Guven, 1995; Cartas-Fuentevilla, 2002). Thus, we can see
that in general there is a relevant contribution to linearized equations because of
[GB] term when we add it in the [DNG] action for p-branes.

3.1. The DNG Action With a Gauss–Bonnet Topological Term
in Closed String Theory

In this section we will see what happens when we consider in Eqs. (14), (16),
and (17), the case of string theory. For this, we know that in a two-dimensional
worldsheet surface, swept out for a string, the Einstein tensor vanishes Gab = 0,
and Eq. (14) takes the form

K i = 0, (18)

where we can see that the dynamics for [DNG] and [DNG-GB] in string theory are
the same, and we do not find any contribution because of [GB] topological term,
thus, if we use a conventional formulation to quantize the [DNG-GB] strings from
corresponding classical dynamics (Eq. (18)) the same result is obtained and we
would not find apparently any interest for including the [GB] topological term in
any action describing strings. However, when in Eq. (16) we consider the case of
string theory we obtain


a = √−γ
[−σφa + βγ cdDγ a

cd − βγ abDγ cb
c
]
. (19)

In this manner, we can see that the last two terms correspond to the topological
term that do not vanish and give a nontrivial contribution to the phase space as we
will see in the next sections.

For the purposes of this paper, we take the case of string theory in Eq. (17),
obtaining

σ [−�̃i
j − K ab

i K ab
j + g(R(ea , n j )e

a , ni )]φ j

+ 4βK abi ∇̃c∇̃b K a
cjφ j + 4βK abi ∇̃b K a

cj ∇̃cφ j + 4βK abi ∇̃c K a
cj ∇̃bφ j

+ 4βK abi K a
cj ∇̃c∇̃bφ j − 2βK abi�̃K ab

jφ j − 4βK abi ∇̃c K ab j ∇̃cφ j
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− 2βK abi K ab
j�̃φ j − 2βK abi ∇̃b∇̃a K jφ j − 4βK abi ∇̃a K j ∇̃bφ j

− 2βK abi K j ∇̃b∇̃aφ j − 2βK abi K ab
jφ j R + 2β Rcd K cd

jφ
j K i

+ 2βK i�̃K jφ j + 4βK i ∇̃c K j ∇̃cφ j + 2βK i K j�̃φ j − 2βK i ∇̃c∇̃g K gcjφ j

− 4βK i ∇̃g K gcj ∇̃cφ j − 2βK i K cgj ∇̃c∇̃gφ j = 0, (20)

where we can see that there is also a contribution to the [DNG]’s linearized equa-
tions because of [GB] topological term, which is completely unknown in the
literature. It is remarkable to mention that the linearized equations for [DNG-GB]
strings theory, Eq. (20), can be useful in stability analysis, however, this is far from
our purposes and we shall leave it as an open question, and we shall focus on the
effects of the [GB] topological term on the phase space.

On the other hand, we consider the Eq. (18) in Eq. (20), obtaining

Pi jφ j = 0 (21)

where the operator Pi j is given for

Pi j = [
σ
{−�̃i j − K ab

i K abj + g(R(ea , n j )ea , ni )
} + 4βK abi ∇̃c∇̃b K a

cj

+ 4βK abi ∇̃b K a
cj ∇̃c + 4βK abi ∇̃c K a

cj ∇̃b + 4βK abi K a
cj ∇̃c∇̃b

− 2βK abi�̃K ab
j − 4βK abi ∇̃c K ab j ∇̃c

− 2βK abi K ab
j�̃ − 2βK abi K ab

j R
]
. (22)

In the next section we will apply the self-adjoint operators method to Eq. (21),
and we will demonstrate that the operator Pi j given in Eq. (22) is self-adjoint,
obtaining a symplectic current from this property.

4. SELF-ADJOINTNESS OF THE LINEARIZED DYNAMICS

In this section we shall demonstrate that the operator Pi
j , given in Eq. (22),

is indeed self-adjoint and in this manner we shall construct a symplectic current
in terms of solutions of the Eq. (21). With this purpose, let φ1

i and φ2
i be two

arbitrary scalar fields, which correspond to a pair of solutions of the Eq. (21), thus
we can verify the following:

−σφ1i�̃φ2
i = −σ�̃φ1iφ2

i + ∇a j1
a , (23)

4βK abi ∇̃c∇̃b K a
cjφ1iφ2 j = 4βK abi ∇̃c∇̃b K a

cjφ1iφ2 j

− 4βK abj ∇̃c∇̃b K a
ciφ1iφ2 j

+ 4βK abj ∇̃c∇̃b K a
ciφ1iφ2 j , (24)
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4βK abi ∇̃b K a
cjφ1i ∇̃cφ2 j =−4β∇̃a K bci ∇̃b K c

ajφ1iφ2 j

− 4βK bci ∇̃a∇̃b K c
ajφ1iφ2 j

− 4βK bci ∇̃b K c
aj ∇̃aφ1iφ2 j + ∇a j2

a , (25)

4βK abi ∇̃c K b
cjφ1i ∇̃aφ2 j =−4β∇̃a K abi ∇̃c K b

cjφ1iφ2 j

− 4βK abi ∇̃a∇̃c K b
cjφ1iφ2 j

− 4βK abi ∇̃c K b
cj ∇̃aφ1iφ2 j + ∇a j3

a , (26)

4βK abi K a
cjφ1i ∇̃c∇̃bφ2 j = 4β∇̃a∇̃b K cai K c

bjφ1iφ2 j

+ 4β∇̃b K cai ∇̃a K c
bjφ1iφ2 j

+ 4β∇̃b K cai K c
bj ∇̃aφ1iφ2 j

+ 4β∇̃a K cai ∇̃b K c
bjφ1iφ2 j

+ 4βK cai ∇̃a∇̃b K c
bjφ1iφ2 j

+ 4βK cai ∇̃b K c
bj ∇̃aφ1iφ2 j

+ 4β∇̃a K cai K c
bj ∇̃bφ1iφ2 j

+ 4βK cai ∇̃a K c
bj ∇̃bφ1iφ2 j

+ 4βK cai K c
bj ∇̃a∇̃bφ1iφ2 j + ∇a j4

a , (27)

−2βK abi�̃K ab
jφ1iφ2 j = −2βK abi�̃K ab

jφ1iφ2 j + 2βK abj�̃K ab
iφ1iφ2 j

− 2βK abj�̃K ab
iφ1iφ2 j , (28)

−4βK cdi ∇̃a K cd
jφ1i ∇̃aφ2 j = 4β∇̃a K cdi ∇̃a K cd

jφ1iφ2 j + 4βK cdi�̃K cd
jφ1iφ2 j

+ 4βK cdi ∇̃a K cd
j ∇̃aφ1iφ2 j + ∇a j5

a , (29)

−2βK cdi K cd
jφ1i�̃φ2 j = −2β�̃K cdi K cd

jφ1iφ2 j

− 4β∇̃a K cdi ∇̃a K cd
jφ1iφ2 j

− 4β∇̃a K cdi K cd
j ∇̃aφ1iφ2 j

− 2βK cdi�̃K cd
jφ1iφ2 j

− 4βK cdi ∇̃a K cd
j ∇̃aφ1iφ2 j

− 2βK cdi K cd
j�̃φ1iφ2 j + ∇a j6

a , (30)

where

j1
a = σ

[−φ1i ∇̃aφ2
i + ∇̃aφ1iφ2

i
]
, (31)

j2
a = 4βK bci ∇̃b K c

ajφ1iφ2 j , (32)
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j3
a = 4βK abi ∇̃c K b

cjφ1iφ2 j , (33)

j4
a = β

[
4K cbi K c

ajφ1i ∇̃bφ2 j − 4∇̃b K cai K c
bjφ1iφ2 j

− 4K cai ∇̃b K c
bjφ1iφ2 j − 4K cai K c

bj ∇̃bφ1iφ2 j
]
, (34)

j5
a = −4βK cdi ∇̃a K cd

jφ1iφ2 j (35)

j6
a = β

[−2K cdi K cd
jφ1i ∇̃aφ2 j + 2∇̃a K cdi K cd

jφ1iφ2 j

+ 2K cdi ∇̃a K cd
jφ1iφ2 j + 2K cdi K cd

j ∇̃aφ1iφ2 j
]
. (36)

In this manner, considering the Eqs. (22)–(35), and after some arrangements, we
obtain

φ1i (Pi j )φ2 j = (P ji )φ1iφ2 j + ∇a ja , (37)

where j a = �6
i=1 j i

a , which we can simplifly by substituting explicitly the
Eqs. (31)–(36):

j a = σ
[−φ1i ∇̃aφ2

i + ∇̃aφ1iφ2
i
] + 4βK bci ∇̃b K c

ajφ1iφ2 j

− 4βK cdi ∇̃a K cd
jφ1iφ2 j + β

[
4K cbi K c

ajφ1i ∇̃bφ2 j

− 4∇̃b K cai K c
bjφ1iφ2 j − 4K cai K c

bj ∇̃bφ1iφ2 j
]

+ β
[−2K cdi K cd

jφ1i ∇̃aφ2 j + 2∇̃a K cdi K cd
jφ1iφ2 j

+ 2K cdi ∇̃a K cd
jφ1iφ2 j + 2K cdi K cd

j ∇̃aφ1iφ2 j
]
. (38)

In this manner, Eq. (37) implies that the operator Pi j is self-adjoint, and considering
that φ1i , and φ2 j correspond to solutions of the Eq. (21) (Pi jφ1 j = Pi jφ2 j = 0),
j a given in Eq. (38) is a worldsheet covariantly conserved

∇a ja = 0. (39)

In the next section, we will compare the expression Eq. (38) with the variation
of the symplectic potential given in Eq. (19) on the phase space, and we will
demostrate that they are exactly the same.

5. THE WITTEN PHASE SPACE FOR [DNG-GB] STRINGS
AND THE SYMPLECTIC STRUCTURE ON Z

In accordance with Crncović and Witten (1987), in a given physical theory,
the classical phase space is the space of solutions of the classical equations of
motion, which corresponds to a manifestly covariant definition, and on such phase
space we can construct a covariant and gauge invariant symplectic structure. The
basic idea to construct a symplectic structure on the space phase is to describe
Poisson brackets of the theory in terms of it, instead of choosing p’s and q’s.
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Based on the last paragraph, the Witten phase space for [DNG-GB] p-branes,
is the space of solutions of Eq. (14)

σ K i + 2βGab K abi = 0,

but, for [DNG-GB] strings Gab = 0 is the set of solutions of Eq. (18)

K i = 0,

that we shall call Z , and on this phase space we will construct a symplectic struc-
ture. We can notice that the phase space for [DNG] strings (Cartas-Fuentevilla,
2002; Escalante, 2004) is the same for [DNG-GB] strings, Eq. (18), but the corre-
sponding symplectic structures, that are in the transition of the regimens classical
and quantum, will be different, as we shall see below. In the literature, using a
conventional canonical formulation to quantize the [DNG-GB] strings from the
corresponding classical dynamics, Eq. (18), the same results are obtained whether
we include the topological term or not, but in this scheme of quantization there is
an important contribution of such term as in path integral formalism, where such
term has a relevant contribution weighting the different topologies in the sum over
world surfaces.

Thus, following to Cartas-Fuentevilla (2002) and Escalante (2004), we can
identify the scalar fields φi , φa as one-forms on Z and therefore anticommutating
objects: φiφ j = −φ jφi , and φaφb = −φbφa . Additionally, in Cartas-Fuentevilla
(2002, 2004) the vector field δ = niφi is identified as the exterior derivative on
Z , but it is incomplete, because the exterior derivative on Z changes when we
consider the importance of the tangential deformations, and becomes

δ = niφi + eaφa , (40)

since it is the correct exterior derivative which satisfies

δ2 = (niφi + eaφa)(n jφ j + ebφb) = 0, (41)

which vanishes because of the commutativity of the zero-forms ni , ea and the anti-
commutativity of the one-forms φi , φa on Z (Cartas-Fuentevilla, 2002; Escalante,
2004).

In this manner, if we calculate the variation of symplectic potential given in
Eq. (19), we obtain

δ
a = D
a = √−γ j ′a , (42)

with j ′a given by

j ′a = σφi ∇̃aφi − 4βK bci ∇̃b K c
ajφiφ j − 4βK bci K c

ajφi ∇̃bφ j

+ 2βK cdi K cd
jφi ∇̃aφ j + 2βK cdi ∇̃a K cd

jφiφ j , (43)
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where we have used Eqs. (8), (9), and (41), and we have gauged away the φa

terms, because it is identified as a diffeomorphism on the worldsheet (Escalante,
2004).

Now, we compare the two-form obtained in Eq. (43) with the symplectic
current found in last section considering the self-adjointness of the linearized
dynamics. For this purpose, we can set φ1i = φ2i = φi , and use the antisymme-
try of this scalar field in Eq. (38) (Cartas-Fuentevilla, 2002; Escalante, 2004),
to obtain

j a = σφi ∇̃aφi − 4βK bci ∇̃b K c
ajφiφ j − 4βK bci K c

ajφi ∇̃bφ j

+ 2βK cdi K cd
jφi ∇̃aφ j + 2βK cdi ∇̃a K cd

jφiφ j , (44)

where we can notice that this corresponds exactly to the two-form obtained taking
the variation of the symplectic potential, Eq. (43).

Thus, we can notice that in string theory, the [DNG] action with the [GB]
topological term has indeed a physically relevant contribution on the symplectic
current found in Eq. (44), due to the proportional terms to the parameter β. If the
parameter β vanishes, we obtain the symplectic current found for [DNG] action
(Cartas-Fuentevilla, 2002; Escalante, 2004).

On the other hand, if we take σ = 0 and considering the case of string theory in
the Eq. (14), the dynamics vanishes, and we would not find apparently any physical
motivation for including the [GB] topological term in any action describing strings,
however, in this paper the proportional terms to the parameter β in the Eqs. (19),
(20), and (44) do not vanish. In this manner, though there is no dynamics of
the system but we have a nontrivial deformation dynamics (see Eq. (20) with
σ = 0), and we can construct a nontrivial symplectic structure that lives in the
transition of the regimes quantum and classical, that we will utilize in futures
works.

It is important to notice that the treatment presented in Cartas-Fuentevilla
(2004) is incomplete, because the exterior derivative employed is not correct.
However, this work is consistent with the results obtained by the adjoint operators
method, Eq. (37), and by the variation of the symplectic potential, Eq. (43).

With the previous results, we can define a two-form on Z in terms of Eq. (44),
that will be our symplectic structure

ω ≡
∫

�

√−γ j ad�a =
∫

�

δ
ad�a , (45)

were � is a Cauchy surface for the configuration of the string.
We can see that ω is an exact two-form and in particular is closed as δ is

nilpotent, and this is

δω =
∫

�

δ(δ
a) d�a =
∫

�

D(D
a) d�a = 0. (46)
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Now, we will prove that the symplectic structure, found in Eq. (44), is gauge
invariant. For this purpose, we observe the degenerate directions on the phase
space associated with the gauge transformations of the theory, such degenerate
directions will be associated with spacetime infinitesimal diffeomorphisms

Xµ → Xµ + δXµ. (47)

Thus, we shall show that our symplectic structure ω is invariant under the trans-
formation given in Eq. (47). For this, we use the fact that ω is given in terms of the
fields φi = ni

µδXµ and under the transformation Eq. (47), is invariant, that is

φi = ni
µδ[Xµ + δXµ] = φi , (48)

where the second term vanishes because δ is nilpotent; in this manner, we have
shown that ω is a gauge invariant.

It is important to notice that δXµ, in the definition of φi , physically represents
the infinitesimal spacetime deformations of the embedding, whereas δXµ in the
transformation Eq. (47) is a spacetime diffeomorphism (Cartas-Fuentevilla, 2002).

Therefore, ω is a nondegenerate two-form on Z for [DNG-GB] string theory.

6. CONCLUSIONS AND PROSPECTS

As we have seen, although in string theory the [GB] topological term that we
have added to the [DNG] action does not contribute to the dynamics of the system,
it has a nontrivial contribution on the Witten covariant phase space, by identifying
a symplectic potential as in Escalante (2004), and using a covariant description of
the canonical formalism, which is completely unknown in the literature. Taking
this into account, we have constructed a covariant and gauge invariant geometrical
structure for [DNG-GB] strings, from which we shall study, for example, the rele-
vant symmetries of the system and construct the corresponding Poisson brackets.
It is important to mention that the quantization aspects for [DNG] action in string
theory is well known, concretely the solutions for the dynamics are known in an
explicit way in the literature, which is crucial in the study of such aspects, but
other cases are not considered, for example, the system taken in this paper ([DNG-
GB] branes), because it is difficult to solve the equations of motion. However, in
the case tried here the equations of motion for [DNG] and [DNG-GB] in string
theory are the same (Eq. (18)), and specifically their solutions. In this manner,
we can take advantage of this fact and use the solutions known to the equations
of motion for [DNG] string, and the results presented here to reveal explicitly the
contribution of the topological term on the quantization aspects of the theory under
study, which has not been considered in the literature. However, this is a future
work.

In addition, it is important to mention that the same treatment presented in
this paper is applicable for the First Chern number, and that also is a topological
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invariant for the worldsheet sweep out a string embedded in a 4-dimensional back-
ground spacetime, but this calculation we shall develop in future works when we
will require it explicitly.
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